2008 CDC Guidelines On Sterilization and Disinfection
The Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 has been posted at http://www.cdc.gov/ncidod/dhqp/pdf/guidelines/Disinfection_Nov_2008.pdf
The guideline will also be published in the MMWR at a later date.
-----------------------------------------------------
Dental Instruments
Scientific articles and increased publicity about the potential for transmitting infectious agents in dentistry have focused attention on dental instruments as possible agents for pathogen transmission207, 208. The American Dental Association recommends that surgical and other instruments that normally penetrate soft tissue or bone (e.g., extraction forceps, scalpel blades, bone chisels, periodontal scalers, and surgical burs) be classified as critical devices that should be sterilized after each use or discarded. Instruments not intended to penetrate oral soft tissues or bone (e.g., amalgam condensers, and air/water syringes) but that could contact oral tissues are classified as semicritical, but sterilization after each use is recommended if the instruments are heat-tolerant 43, 209. If a semicritical item is heat–sensitive, it should, at a minimum, be processed with high-level disinfection 43, 210. Handpieces can be contaminated internally with patient material and should be heat sterilized after each patient. Handpieces that cannot be heat sterilized should not be used. 211 Methods of sterilization that can be used for critical or semicritical dental instruments and materials that are heat-stable include steam under pressure (autoclave), chemical (formaldehyde) vapor, and dry heat (e.g., 320ºF for 2 hours). Dental professionals most commonly use the steam sterilizer 212. All three sterilization procedures can damage some dental instruments, including steam-sterilized hand pieces 213. Heat-tolerant alternatives are available for most clinical dental applications and are preferred43.
CDC has divided noncritical surfaces in dental offices into clinical contact and housekeeping surfaces43. Clinical contact surfaces are surfaces that might be touched frequently with gloved hands during patient care or that might become contaminated with blood or other potentially infectious material and subsequently contact instruments, hands, gloves, or devices (e.g., light handles, switches, dental X-ray equipment, chair-side computers). Barrier protective coverings (e.g., clear plastic wraps) can be used for these surfaces, particularly those that are difficult to clean (e.g., light handles, chair switches). The coverings should be changed when visibly soiled or damaged and routinely (e.g., between patients). Protected surfaces should be disinfected at the end of each day or if contamination is evident. If not barrier-protected, these surfaces should be disinfected between patients with an intermediate-disinfectant (i.e., EPA-registered hospital disinfectant with tuberculocidal claim) or low-level disinfectant (i.e., EPA-registered hospital disinfectant with an HBV and HIV label claim) 43, 214, 215.
Most housekeeping surfaces need to be cleaned only with a detergent and water or an EPA-registered hospital disinfectant, depending of the nature of the surface and the type and degree of contamination. When housekeeping surfaces are visibly contaminated by blood or body substances, however, prompt removal and surface disinfection is a sound infection control practice and required by the Occupational Safety and Health Administration (OSHA) 43, 214.
Several studies have demonstrated variability among dental practices while trying to meet these recommendations216, 217. For example, 68% of respondents believed they were sterilizing their instruments but did not use appropriate chemical sterilants or exposure times and 49% of respondents did not challenge autoclaves with biological indicators216. Other investigators using biologic indicators have found a high proportion (15%–65%) of positive spore tests after assessing the efficacy of sterilizers used in dental offices. In one study of Minnesota dental offices, operator error, rather than mechanical malfunction218, caused 87% of sterilization failures. Common factors in the improper use of sterilizers include chamber overload, low temperature setting, inadequate exposure time, failure to preheat the sterilizer, and interruption of the cycle.
Mail-return sterilization monitoring services use spore strips to test sterilizers in dental clinics, but delay caused by mailing to the test laboratory could potentially cause false-negatives results. Studies revealed, however, that the post-sterilization time and temperature after a 7-day delay had no influence on the test results219. Delays (7 days at 27ºC and 37ºC, 3-day mail delay) did not cause any predictable pattern of inaccurate spore tests 220.
The guideline will also be published in the MMWR at a later date.
-----------------------------------------------------
Dental Instruments
Scientific articles and increased publicity about the potential for transmitting infectious agents in dentistry have focused attention on dental instruments as possible agents for pathogen transmission207, 208. The American Dental Association recommends that surgical and other instruments that normally penetrate soft tissue or bone (e.g., extraction forceps, scalpel blades, bone chisels, periodontal scalers, and surgical burs) be classified as critical devices that should be sterilized after each use or discarded. Instruments not intended to penetrate oral soft tissues or bone (e.g., amalgam condensers, and air/water syringes) but that could contact oral tissues are classified as semicritical, but sterilization after each use is recommended if the instruments are heat-tolerant 43, 209. If a semicritical item is heat–sensitive, it should, at a minimum, be processed with high-level disinfection 43, 210. Handpieces can be contaminated internally with patient material and should be heat sterilized after each patient. Handpieces that cannot be heat sterilized should not be used. 211 Methods of sterilization that can be used for critical or semicritical dental instruments and materials that are heat-stable include steam under pressure (autoclave), chemical (formaldehyde) vapor, and dry heat (e.g., 320ºF for 2 hours). Dental professionals most commonly use the steam sterilizer 212. All three sterilization procedures can damage some dental instruments, including steam-sterilized hand pieces 213. Heat-tolerant alternatives are available for most clinical dental applications and are preferred43.
CDC has divided noncritical surfaces in dental offices into clinical contact and housekeeping surfaces43. Clinical contact surfaces are surfaces that might be touched frequently with gloved hands during patient care or that might become contaminated with blood or other potentially infectious material and subsequently contact instruments, hands, gloves, or devices (e.g., light handles, switches, dental X-ray equipment, chair-side computers). Barrier protective coverings (e.g., clear plastic wraps) can be used for these surfaces, particularly those that are difficult to clean (e.g., light handles, chair switches). The coverings should be changed when visibly soiled or damaged and routinely (e.g., between patients). Protected surfaces should be disinfected at the end of each day or if contamination is evident. If not barrier-protected, these surfaces should be disinfected between patients with an intermediate-disinfectant (i.e., EPA-registered hospital disinfectant with tuberculocidal claim) or low-level disinfectant (i.e., EPA-registered hospital disinfectant with an HBV and HIV label claim) 43, 214, 215.
Most housekeeping surfaces need to be cleaned only with a detergent and water or an EPA-registered hospital disinfectant, depending of the nature of the surface and the type and degree of contamination. When housekeeping surfaces are visibly contaminated by blood or body substances, however, prompt removal and surface disinfection is a sound infection control practice and required by the Occupational Safety and Health Administration (OSHA) 43, 214.
Several studies have demonstrated variability among dental practices while trying to meet these recommendations216, 217. For example, 68% of respondents believed they were sterilizing their instruments but did not use appropriate chemical sterilants or exposure times and 49% of respondents did not challenge autoclaves with biological indicators216. Other investigators using biologic indicators have found a high proportion (15%–65%) of positive spore tests after assessing the efficacy of sterilizers used in dental offices. In one study of Minnesota dental offices, operator error, rather than mechanical malfunction218, caused 87% of sterilization failures. Common factors in the improper use of sterilizers include chamber overload, low temperature setting, inadequate exposure time, failure to preheat the sterilizer, and interruption of the cycle.
Mail-return sterilization monitoring services use spore strips to test sterilizers in dental clinics, but delay caused by mailing to the test laboratory could potentially cause false-negatives results. Studies revealed, however, that the post-sterilization time and temperature after a 7-day delay had no influence on the test results219. Delays (7 days at 27ºC and 37ºC, 3-day mail delay) did not cause any predictable pattern of inaccurate spore tests 220.
Comments