Abstract
Dental implant surgery, which involves the surgical  insertion of a dental implant into the jawbone as an artificial root,  has become one of the most successful applications of computed  tomography (CT) in dental implantology. For successful implant surgery,  it is essential to identify vital anatomic structures such as the  inferior alveolar nerve (IAN), which should be avoided during the  surgical procedure. Due to the ambiguity of its structure, the IAN is  very elusive to extract in dental CT images. As a result, the IAN canal  is typically identified in most previous studies. This paper presents a  novel method of automatically extracting the IAN canal. Mental and  mandibular foramens, which are regarded as the ends of the IAN canal in  the mandible, are detected automatically using 3-D panoramic volume  rendering (VR) and texture analysis techniques. In the 3-D panoramic VR,  novel color shading and compositing methods are proposed to emphasize  the foramens and isolate them from other fine structures. Subsequently,  the path of the IAN canal is computed using a line-tracking algorithm.  Finally, the IAN canal is extracted by expanding the region of the path  using a fast marching method with a new speed function exploiting the  anatomical information about the canal radius. In experimental results  using ten clinical datasets, the proposed method identified the IAN  canal accurately, demonstrating that this approach assists dentists  substantially during dental implant surgery
 
Comments