Accuracy assessment of robot-assisted implant surgery in dentistry: A systematic review and meta-analysis

 

Abstract

Statement of problem

The systematic assessment of accuracy of robot-assisted implant surgery is lacking.

Purpose

The purpose of this systematic review and meta-analysis was to evaluate the accuracy of robot-assisted implant surgery and compare it with computer-aided implant surgery in partially and completely edentulous patients and human phantoms.

Material and methods

The studies were selected from ScienceDirect, Web of science, Cochrane Library, PubMed, and CNKI databases. The risk of bias of the included studies was evaluated with the risk of bias in nonrandomized studies of interventions tool. The mean and standard deviation of global coronal, apical, and angular deviations of implants were the primary outcome. Meta-analysis was conducted to evaluate the accuracy of the robot-assisted implant surgery and compare it with computer-aided implant surgery in dental implantation (α=.05).

Results

Eleven in vitro studies with 809 implants and 10 clinical studies with 257 implants were included. For the in vitro studies, the mean global coronal, apical, and angular deviations of robot-assisted implant surgery were 0.7 mm (95% CI: 0.6 to 0.8), 0.8 mm (95% CI: 0.6 to 1.0), and 1.8 degrees (95%CI: 1.2 to 2.5), respectively. For the clinical studies, the average global coronal, apical, and angular deviations of robot-assisted implant surgery were 0.6 mm (95% CI: 0.5 to 0.8), 0.7 mm (95% CI: 0.6 to 0.8), and 1.6 degrees (95%CI: 1.1 to 2.0), respectively. For the in vitro studies, the robot-assisted implant surgery group showed significantly more decrease in global coronal deviation than the computer-assisted implant surgery group (P=.012). The robot-assisted implant surgery group offered smaller global apical deviation (P=.001) and angular deviation (P<.001) than the computer-assisted implant surgery group.

Conclusions

Robot navigation is a clinically reliable method of implant placement. Significantly lower global coronal, apical, and angular deviations were observed for robot-assisted implant surgery compared with computer-assisted implant surgery in human phantoms.

Abstract

Statement of problem

The systematic assessment of accuracy of robot-assisted implant surgery is lacking.

Purpose

The purpose of this systematic review and meta-analysis was to evaluate the accuracy of robot-assisted implant surgery and compare it with computer-aided implant surgery in partially and completely edentulous patients and human phantoms.

Material and methods

The studies were selected from ScienceDirect, Web of science, Cochrane Library, PubMed, and CNKI databases. The risk of bias of the included studies was evaluated with the risk of bias in nonrandomized studies of interventions tool. The mean and standard deviation of global coronal, apical, and angular deviations of implants were the primary outcome. Meta-analysis was conducted to evaluate the accuracy of the robot-assisted implant surgery and compare it with computer-aided implant surgery in dental implantation (α=.05).

Results

Eleven in vitro studies with 809 implants and 10 clinical studies with 257 implants were included. For the in vitro studies, the mean global coronal, apical, and angular deviations of robot-assisted implant surgery were 0.7 mm (95% CI: 0.6 to 0.8), 0.8 mm (95% CI: 0.6 to 1.0), and 1.8 degrees (95%CI: 1.2 to 2.5), respectively. For the clinical studies, the average global coronal, apical, and angular deviations of robot-assisted implant surgery were 0.6 mm (95% CI: 0.5 to 0.8), 0.7 mm (95% CI: 0.6 to 0.8), and 1.6 degrees (95%CI: 1.1 to 2.0), respectively. For the in vitro studies, the robot-assisted implant surgery group showed significantly more decrease in global coronal deviation than the computer-assisted implant surgery group (P=.012). The robot-assisted implant surgery group offered smaller global apical deviation (P=.001) and angular deviation (P<.001) than the computer-assisted implant surgery group.

Conclusions

Robot navigation is a clinically reliable method of implant placement. Significantly lower global coronal, apical, and angular deviations were observed for robot-assisted implant surgery compared with computer-assisted implant surgery in human phantoms.

Comments