Prevention of dentine erosion by brushing with anti-erosive toothpastes

Abstract

Available online 2 April 2014

Objective

This in vitro study aimed to investigate the preventive effect of brushing with anti-erosive toothpastes compared to conventional fluoride toothpaste on dentine erosion.

Materials and methods

Bovine dentine specimens (n = 12 per subgroup) were eroded in an artificial mouth (6 days, 6 × 30 s/day) using either citric acid (pH:2.5) or a hydrochloric acid/pepsin solution (pH:1.6), simulating extrinsic or intrinsic erosive conditions, respectively. In between, the specimens were rinsed with artificial saliva. Twice daily, the specimens were brushed for 15 s in an automatic brushing machine at 2.5 N with a conventional fluoride toothpaste slurry (elmex, AmF) or toothpaste slurries with anti-erosive formulations: Apacare (NaF/1% nHAP), Biorepair (ZnCO3-HAP), Chitodent (Chitosan), elmex Erosionsschutz (NaF/AmF/SnCl2/Chitosan), mirasensitive hap (NaF/30% HAP), Sensodyne Proschmelz (NaF/KNO3). Unbrushed specimens served as control. Dentine loss was measured profilometrically and statistically analysed using two-way and one-way ANOVA followed by Scheffe‘s post hoc tests. RDA-values of all toothpastes were determined, and linear mixed models were applied to analyse the influence of toothpaste abrasivity on dentine wear (p < 0.05).

Results

Dentine erosion of unbrushed specimens amounted to 5.1 ± 1.0 μm (extrinsic conditions) and 12.9 ± 1.4 μm (intrinsic conditions). All toothpastes significantly reduced dentine erosion by 24–67% (extrinsic conditions) and 21–40% (intrinsic conditions). Biorepair was least effective, while all other toothpastes were not significantly different from each other. Linear mixed models did not show a significant effect of the RDA-value of the respective toothpaste on dentine loss.

Conclusion

Toothpastes with anti-erosive formulations reduced dentine erosion, especially under simulated extrinsic erosive conditions, but were not superior to a conventional fluoride toothpaste.

Comments