Augmented Reality and 3-dimensional Dynamic Navigation System Integration for Osteotomy and Root-end Resection
Journal of Endodontics
Published:July 13, 2023DOI:https://doi.org/10.1016/j.joen.2023.07.007
Abstract
Introduction
Augmented reality superimposes high-definition computer-generated virtual content
onto the existing environment, providing users with an enhanced perception of reality.
This study investigates the feasibility of integrating an augmented reality head-mounted
device (AR) into a 3-dimensional dynamic navigation system (3D-DNS) for osteotomy
and root-end resection (RER). It compares the accuracy and efficiency of AR + 3D-DNS
to 3D-DNS for osteotomy and RER.
Methods
Seventy-two tooth roots of 3D-printed surgical jaw models were divided into two groups:
AR + 3D-DNS (n=36) and 3D-DNS (n=36). Cone-beam computed tomography scans were taken
pre-and post-operatively. The osteotomy and RER were virtually planned on X-guide
software and delivered under 3D-DNS guidance. For the AR + 3D-DNS group, an AR head-mounted
device (Microsoft HoloLens 2) was integrated into the 3D-DNS. The 2D- and 3D- deviations
were calculated. The osteotomy and RER time and the number of procedural mishaps were
recorded.
Results
Osteotomy and RER were completed in all samples (72/72). AR + 3D-DNS was more accurate
than 3D-DNS, showing lower 2D- and 3D- deviation values (p<.05). The AR + 3D-DNS was
more efficient in time than 3D-DNS (p<.05). There was no significant difference in
the number of mishaps (p>.05).
Conclusions
Within the limitations of this in vitro study, the integration of an AR head-mounted
device to 3D-DNS is feasible for osteotomy and RER. AR improved the accuracy and time
efficiency of 3D-DNS in osteotomy and RER. Head-mounted AR has the potential to be
safely and reliably integrated into 3D-DNS for endodontic microsurgery.
Comments