Biocompatible orthodontic cement with antibacterial capability and protein repellency
, Article number: 21412 (2021)
Abstract
Background
White spot lesions (WSLs) often occur in orthodontic treatments. The objectives of this study were to develop a novel orthodontic cement using particles of nano silver (NAg), N-acetylcysteine (NAC) and 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate the effects on bonding strength, biofilms and biocompatibility.
Methods
A commercial resin-modified glass ionomer cement (RMGIC) was modified by adding NAg, NAC and MPC. The unmodified RMGIC served as the control. Enamel bond strength and cytotoxicity of the cements were investigated. The protein repellent behavior of cements was also evaluated. The metabolic assay, lactic acid production assay and colony-forming unit assay of biofilms were used to determine the antibacterial capability of cements.
Results
The new bioactive cement with NAg, NAC and MPC had clinically acceptable bond strength and biocompatibility. Compared to commercial control, the new cement suppressed metabolic activity and lactic acid production of biofilms by 59.03% and 70.02% respectively (p < 0.05), reduced biofilm CFU by 2 logs (p < 0.05) and reduced protein adsorption by 76.87% (p < 0.05).
Conclusions
The new cement with NAg, NAC and MPC had strong antibacterial capability, protein-repellent ability and acceptable biocompatibility. The new cement is promising to protect enamel from demineralization during orthodontic treatments.
Comments